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Assessment of Vineyard Canopy Porosity  
Using Machine Vision
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Abstract:  Canopy porosity is an important viticultural factor because canopy gaps favor fruit exposure and air cir-
culation, both of which benefit fruit quality and health. Point quadrat analysis (PQA) is standard for assessing canopy 
gaps but has limited utility because the method is laborious and time consuming. A new, objective, noninvasive, 
image-based method was developed and compared with PQA to assess the percent canopy gaps in vineyards with 
diverse viticultural conditions and grape varieties in New Zealand, Croatia, and Spain. The determination coefficient 
(R2) of the regressions between the percent gaps using both methods exceeded 0.90 (p < 0.05) at each site, and R2 of 
the global regression was 0.93 (p < 0.05). The time of day and side of the canopy photographed did not significantly 
affect the performance of the algorithm. With this new image-based assessment method, canopy management may 
be optimized to configure a desired amount of canopy gaps and thereby improve fruit quality and health. 

Key words: canopy management, fruit exposure, image analysis, noninvasive sensing, point quadrat analysis, Vitis 
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Canopy features such as leaf area, number of leaf layers, 
canopy porosity, and fruit exposure are important viticulture 
factors that can be regulated by canopy management. In terms 
of canopy porosity, the ideal grapevine canopy has 10 to 20% 
(Palliotti and Silvestroni 2004) or 20 to 40% gaps (Smart 
1987) to ensure adequate sunlight capture and reduce shad-
ing. Canopy gaps are important for the fruit because airflow 
reduces the chance of crop loss to fungal disease (English et 
al. 1990, Austin et al. 2011), and exposure of the fruit to sun 
induces synthesis of aroma and flavor compounds (Reynolds 
and Wardle 1989, Diago et al. 2010) as well as anthocyanin 
pigments and other phenols (Bubola et al. 2012, Diago et 
al. 2012a, Tardaguila et al. 2012). However, excessive fruit 
exposure, especially in warm growing regions, can lead to 
sunburn and a reduction in grape color quality (Kliewer 1977, 
Mori et al. 2007). Optimizing both canopy porosity and fruit 
exposure is a challenge to viticulturists worldwide, and cli-
mates with diverse rainfall and temperature patterns require 
different canopy management strategies to maximize quality.

One of the most common ways to quantify canopy poros-
ity and density is point quadrat analysis (PQA), which was 
adapted from the protocol described by Wilson (1959) for 

application in grapevines (Smart 1987). PQA involves insert-
ing a probe through the grapevine canopy and counting the 
number and parts of the vine the probe comes in contact with, 
including the leaves, clusters, canes, and gaps. The proportion 
of gaps is quantified by dividing the number of gaps by the 
total number of insertions. A minimum of 50 passes through 
the canopy is recommended to accurately quantify the gaps 
(Smart 1987). In addition to its subjective nature, PQA is la-
bor- and time-intensive and can potentially damage the fruit, 
which limits its usefulness in the wine industry. Carrying out 
10 insertions per vine in 20 vines may take ~1.5 hr (Hill et al. 
2011), which limits the number of vines that can be measured 
in a given time frame. Recently, new PQA metrics have been 
developed that integrate the spatial information relative to 
leaf and cluster position in the canopy, which is collected 
from PQA data sets and simplified whole-canopy photosyn-
thetic photon flux (PPF) measurements (Meyers and Vanden 
Heuvel 2008). This new calibrated biomass and photon flux 
distribution model provides a reliable quantitative description 
of canopy biomass distribution and light environment and 
how the canopies respond to a thinning treatment. 

Machine vision is a noninvasive technology based on im-
age analysis. In viticulture, several works have focused on 
using image analysis to assess cluster and berry features 
under laboratory conditions (Diago et al. 2015, Cubero et 
al. 2014, 2015). The use of computer vision based on still 
photography with visible cameras outdoors to characterize 
the grapevine canopy, estimate factors affecting production, 
or assess health of the berries is rarely explored mainly due 
to the difficulties associated with uncontrolled illumination 
in the field. Some researchers have used methods based on 
the analysis of digital red, green, and blue (RGB) images for 
the quantification of various parameters such as the number 
of flowers per inflorescence (Diago et al. 2014); yield (Dunn 
and Martin 2004, Diago et al. 2012b, Nuske et al. 2014); the 
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exposed leaf area, fruit, cane, and gaps (Tardaguila et al. 
2010); and foliage density (Hill et al. 2011). Hill et al. (2011) 
showed a negative correlation between leaf layer number (de-
termined by PQA) and percent gaps (determined by image 
analysis). However, a direct comparison between PQA and 
image analysis in terms of measuring the percent gaps of a 
vine has not been published. Therefore, a method that accu-
rately assesses canopy porosity and correlates strongly with 
the standard PQA method is warranted. Development of such 
a method may help viticulturists refine canopy manipulations 
and configure the goal quantity of canopy gaps, with the over-
all aim of increasing fruit quality and health.

The goal of this study was to develop a new, objective, 
noninvasive automated system to assess the percent gaps of 
grapevine canopies using image analysis in the vineyard. We 
tested this image-based method in vineyards under diverse 
viticultural conditions (e.g., grape varieties, climates, and 
cultural practices) in New Zealand, Croatia, and Spain, and 
investigated the effects of the time of day and canopy side 
photographed.

Materials and Methods
Image acquisition and PQA.  An adapted protocol for in-

field image acquisition was developed based on the procedure 
described by Tardaguila et al. (2010) and used at all sites of 
the three countries. At each site, Vitis vinifera L. grapevines 
of several cultivars were photographed under similar natu-
ral light conditions (within ~1 hr) using a standard digital 
reflex camera with resolution greater than 7-megapixels and 
equipped with a flash light (to avoid or minimize the presence 
of shadows in the canopy images). The camera was mounted 
on a tripod set normal to the canopy, 2.0 m away from the row 
axis and 1.0 m above the ground, and placed on the vertex of 
a “simulated” triangle. To avoid photographing the canopies 
of adjacent vines in rows behind the vine of interest (and 
thus interfering with the desired image), a white cloth was 
placed behind the canopy of the vine to be photographed. The 
camera was configured in auto mode, which compensated for 
changes in luminosity and white balance. Delimitation of the 
canopy area to be measured by PQA (Smart and Robinson 
1991) and image analysis, called the region of interest (ROI), 
was performed using two methods that were later compared. 
The first mode was used in New Zealand and involved use 
of a wooden frame that hung from the top of the foliage wire 
with the bottom of the frame even with the fruiting canes 
(Figure 1A, 1B). The second ROI delineation method (used at 
the Spain and Croatia sites) was simpler and involved placing 
two wooden or plastic sticks (Figure 1C, 1D) or segments of 
colored plastic tape (Figure 1E) at both left and right sides 
of the cordons of each grapevine canopy to delimitate the 
width of the ROI. The height was confined to the first 40 cm 
above the cordons.

New Zealand sites.  The Merlot site was located in 
the Bridge Pa Triangle region (lat. 39°38′20.6″S; long. 
176°42′44.7″E). Merlot vines were clone 181 on 101-14 root-
stock. Vines were planted in 2001, cane-pruned to two canes 
with 10 to 12 buds per cane, and trained on a vertical shoot 

positioning (VSP) trellis with 2.5 m row spacing and 2.0 m 
vine spacing. The Syrah site was located in the Te Awanga re-
gion of Hawke’s Bay (lat. 39°37′27.9″S; long. 176°57′10.3″E). 
The vines were mass select (MS) clone on Riparia Gloire 
rootstocks. Vines were planted in 2008, cane pruned to two 
canes with 10 to 12 buds per cane, and trained on a VSP 
trellis with 2.5 m row spacing and 1.8 m vine spacing. Every 
two weeks, digital photographs were taken with a Sony Cy-
ber-shot 7.2-megapixel camera with a Carl Zeiss Vario-tessar 
lens. Twelve vines per treatment were photographed at each 
site. Image acquisition started before bloom and continued 
until veraison when the bird nets went up. A wooden frame 
(1.2 m × 0.7 m) was used to delimitate the ROI (Figure 1A). 
PQA was performed at all of the sites on the same day the 
photographs were taken. A stainless steel probe 5 mm in di-
ameter was used for point quadrat (PQ) insertions. The PQA 
for percent canopy gaps consisted of 11 passes through the 
canopy at 10-cm horizontal intervals at heights of 10, 30, 50, 
and 70 cm above the cane (44 passes per vine) for each vine. 
All measurements were made during the 2012-2013 growing 
season.

Croatian sites.  The experiment in Croatia was carried out 
in two Merlot vineyards, one Cabernet Sauvignon vineyard, 
and one Sauvignon blanc vineyard. The first Merlot site was 
located in Poreč (lat. 45°13′20.51″N; long. 13°36′00.52″E; 11 
m asl, Istra, Croatia). Merlot vines (clone ISV-F-V6) were 
grafted onto SO4 rootstock, dry-farmed, spur-pruned on a bi-
lateral cordon to retain eight spurs and two buds per spur, and 
trained onto a VSP trellis system with 2.5 m row spacing and 
0.8 m vine spacing. Grapevines were planted in NNE-SSW 
orientation in 2006. The second Merlot site was located in 
Dajla (lat. 45°20′47.00″N; long. 13°33′13.61″E; 23 m asl, Istra, 
Croatia). Merlot vines (clone R12) were grafted onto 1103P 
rootstock, dry-farmed, Guyot-pruned to single cane with 10 
buds and one replacement two-bud spur, and trained onto a 
VSP trellis system with 2.4 m row spacing and 0.9 m vine 
spacing. Grapevines were planted in NW-SE orientation in 
2004. The Cabernet Sauvignon site was located in Dajla (lat. 
45°20′48.48″N; long. 13°33′12.09″E; 20 m asl, Istra, Croatia). 
Cabernet Sauvignon vines (clone R5) were grafted onto 1103P 
rootstock, dry-farmed, Guyot-pruned to a single cane with 
10 buds and one replacement two-bud spur, and trained onto 
a VSP trellis system with 2.4 m row spacing and 0.9 m vine 
spacing. Grapevines were planted in NW-SE orientation in 
2004. The Sauvignon blanc site was located in Funtana (lat. 
45°10′01.55″N; long. 13°38′06.98″E; 32 m asl, Istra, Croatia). 
Sauvignon blanc vines (clone R3) were grafted onto 110R 
rootstock, dry-farmed, Guyot-pruned to a single cane with 
10 buds and one replacement two-bud spur, and trained onto 
a VSP trellis system with 2.6 m row spacing and 0.9 m vine 
spacing. Grapevines were planted in N-S orientation in 2005. 
The first Merlot site located in Poreč was measured in both 
the 2012 and 2013 seasons, whereas the rest of the sites were 
measured in the 2013 season only. Photos of the canopy were 
taken with an Olympus FE-47 digital compact camera one 
week before harvest. Two red plastic rods of dimensions 370 × 
32 mm were positioned on both sides of the vine 80 cm apart 
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at the first Merlot site located in Poreč and 90 cm apart at 
the other sites to measure the width of ROI (Figure 1C). The 
area between these plastic rods and from the basal wire to 40 
cm above was taken for image analysis and PQA. PQA was 
performed on the same day and on the same vines as those 
used for image analysis for accurate comparison between the 
methods. A sample for image acquisition and PQA consisted 
of six vines at the first Merlot site and five vines at all other 
sites and cultivars. Nine samples were taken per year for each 
site and cultivar, resulting in a total of 45 samples for image 
analysis and PQA in Croatia. A stainless steel probe 3 mm in 
diameter and 1 m in length was used for PQ insertions. PQA 
consisted of 100 rod insertions per sample of five vines in all 
plots carried out randomly to cover the entire fruiting zone 
(from the basal wire where cordons or canes were positioned 
to 40 cm above the cane or cordon), which was the same zone 
used for image analysis.

Spanish site.  The experiments were conducted in 2010 in 
a commercial dry-farmed cv. Tempranillo vineyard located in 
Cidamón (lat. 42°29′8.83″N; long. 2°50′22.57″W; 181 m asl, 
La Rioja, Spain). Tempranillo vines (Clone 43) were grafted 

onto 41B rootstock, spur-pruned to 10 to 12 buds on a bilat-
eral cordon, and trained onto a VSP trellis system with 2.7 
m row spacing and 1.15 m vine spacing. Grapevines were 
planted NW–SE orientation in 2004. 

To assess the correlation between digital image analysis 
and PQA, a two-step defoliation and thinning experiment was 
performed. Photos of the canopy were taken with a Canon 
EOS-1D digital still camera one week before harvest. Two 
50-cm pieces of plastic labeling tape were positioned on both 
sides of each vine 115 cm apart (from the end of one cordon 
to the end of the other cordon) to delimitate the width of the 
ROI (Figure 1E). The area between these pieces of plastic 
tape and 40 cm above the basal wire was used for image 
analysis and PQA. Each vine was photographed prior to any 
defoliation or thinning intervention. In the first step, the first 
six main basal leaves and every second cluster of each shoot 
were removed. In the second step, another six leaves and the 
basal cluster of each shoot were removed (total of 12 leaves 
removed). PQA was conducted after each step of image ac-
quisition. A wood probe 5 mm in diameter was used for PQ 
insertions. The PQA for percent canopy gaps consisted of 

Figure 1  Examples of red, green, and blue  im-
ages and their detected gaps (in blue shading) 
using the developed algorithms within selected 
regions of interest, respectively, in (A, B) Merlot 
in New Zealand; (C, D) Merlot in Croatia; and (E, 
F) Tempranillo in Spain.
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three rod insertions through the canopy at heights of 20, 30, 
and 40 cm above the cane (nine passes per vine) in a total of 
eight grapevines. 

Image processing.  The image analysis application was 
developed in MATLAB (MATLAB R2010b, The Mathworks) 
with the goal of automating the process (main steps are de-
scribed in Figure 2). A clustering algorithm based on the 
Mahalanobis distance was used to identify the pixels cor-
responding to the canopy gaps or porosity as described in 
Diago et al. (2012b). The Mahalanobis distance measures the 
similarity between an unknown sample group and a known 
sample group, and it accounts for correlations of the data 
set with different variances for each direction and is scale-
invariant. These properties make this clusterization algorithm 
ideal for image segmentation under uncontrolled conditions, 
especially when segment illumination varies among images. 
The modified algorithm used a known sample of values to 
classify an unknown batch of pixels into groups or classes 
based on a characteristic vector (the RGB color values of 
each pixel). The first step involved a supervised selection 
of a representative number of points to be used as reference 
(also called seed) for each group of classification. Seeds of 20 
pixels corresponding to each group or class (green leaf, back-
ground, trunk, grape cluster, and canopy gap) were manually 
extracted from images for each trial.

Prior to image analysis, ROI delineation was required to 
analyze the canopy gaps in the same area that the PQA was 
carried out. At the New Zealand site, the ROI was delimited 
by the wooden frame whereas at the Croatia and Spain sites, 
the ROI was a rectangle whose width was demarcated by the 
plastic rods or tapes and height was 40 cm above the basal 
wire. The percentage of gaps was calculated as the number 
of pixels tagged as gaps by the algorithm divided by the total 
number of pixels in the ROI. 

Influence of the side of the canopy and time of day on 
image acquisition and processing.  To assess the influence 
of the canopy side that was photographed and the time of 
day at which images were taken (both of which contribute to 
different shadowing effects), a separate trial was conducted 
on 20 Aug 2015 in Croatia. The experiment was performed 
on V. vinifera L. cv. Cabernet Sauvignon vines, clone ISV-
FV5, grafted on SO4 rootstock (V. berlandieri × V. riparia), 
in the experimental vineyard of the Institute of Agriculture 
and Tourism in Poreč, Croatia (lat. 45°13′19.70″N; long. 
13°36′01.39″E). Vines were planted in a NNE-SSW orienta-
tion with a declination of 26° from N-S, in 2006 and spur-
pruned on a bilateral cordon to retain eight spurs and two 
buds per spur, and trained onto a VSP trellis system with 2.5 
m row spacing and 0.8 m vine spacing. Images were taken 
on 30 vines positioned in one vineyard row at three different 

Figure 2  Regressions of percent canopy gaps measured by image analysis compared to canopy gaps measured by point quadrat analysis (PQA; 
solid line) for (A) Merlot (open circles) and Syrah (black circles) in New Zealand in 2012 and 2013 (n = 288); (B) Sauvignon blanc (open circles), Cab-
ernet Sauvignon (black circles), and Merlot (open triangles) in 2012 and 2013 in Croatia (n = 45); and (C) Tempranillo in Spain (n = 24) in 2010; (D) 
all cultivars and sites are pooled (n = 357), with a 1:1 reference line (dotted line), and a 95% confidence interval (dashed line). Slope coefficients were 
significant for α = 0.05.
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times during the day from both sides of the vineyard row. 
Prior to image acquisition, vines were manually defoliated 
to create three different canopy porosity levels around the 
fruiting zone. Likewise, 10 vines were not defoliated to yield 
a small proportion of gaps (4% gaps), 10 vines were defoli-
ated to create a medium number of gaps (17% gaps), and 10 
vines were defoliated more extensively to increase the canopy 
porosity around the clusters by generating a larger number 
of gaps (33% gaps). The first set of images was taken in the 
morning (1100 hr), when the sun was positioned to the east 
side of the vineyard rows. The second set of images was taken 
at midday (1400 hr), when the sun was positioned over the 
vines, and the third set of images was taken in the afternoon 
(1700 hr), when the sun was positioned to the west side of the 
vineyard rows. At each time, images were acquired from both 
sides of the canopy, east and west of vine rows. Vines were 
photographed with the digital single-lens reflex camera Nikon 
D5100 using the lens Nikon AF-S DX NIKKOR 18-55mm 
f/3.5-5.6G VR with the flashlight. A white screen was placed 
behind the vines before taking the images. Two red plastic 
rods (370 × 32 mm) were positioned on both sides of the vine 
and 80 cm apart to delimit the width of the ROI. A checkered 
reference with black and white squares 50 × 50 mm in size 
was used as a dimension reference and positioned on the vine 
trunk under the fruit zone. The area comprised between these 
plastic rods and 40 cm above the cordon was the ROI used for 
image analysis and PQA. PQA was performed on the same 
day as the vines were photographed. A stainless steel probe 
3 mm in diameter was used for PQ insertions, and a plasti-
cized steel net with holes of 10 × 7 cm was used to guide the 
insertions. The PQA for percent canopy gaps consisted of 40 
passes per vine divided in four horizontal intervals at heights 
of 5, 15, 25, and 35 cm above the cordon. Ten insertions were 
made 7 cm apart at each height. Images were analyzed using 
the developed algorithm, and the percentage of canopy gaps 
were computed. 

Statistical analysis.  Correlations between the number 
of gaps in the canopy assessed by PQA and by image analy-
sis were calculated using the determination coefficient (R2). 
Statistical t-tests were used to assess whether the value of 
the slope coefficient for each regression was equal to 1, and 
the 95% confidence intervals of the slope coefficients were 
calculated. All calculations and plots were performed using 
Sigma Plot 12.0 (Systat Software Inc.). To test the influence 
of the time of day and the side of the canopy on the percent 
gaps (canopy porosity) measured by image analysis, a two-
way ANOVA using daytime and canopy side as factors with 
interactions was performed using Infostat/L software.

Results
Figure 1 shows sample RGB images of the canopy gaps 

detected using the image-based algorithm in the selected 
ROIs in New Zealand (Figure 1A, 1B), Croatia (Figure 1C, 
1D), and Spain (Figure 1E, 1F). Differences in canopy density 
were evident among sites, from very dense (Figure 1C, 1D) 
to very porous (Figure 1E, 1F). Despite the general recom-
mendation of using flash and diffuse ambient light to avoid 

the appearance of shadows in the images, some shadows did 
occur (Figure 1E, 1F), but the developed algorithm was able 
to overcome their effect. 

Canopy porosity by image analysis versus PQA: Regres-
sion models.  The differences in percent gaps in the different 
imaged canopies of the three sites were confirmed by the plots 
in Figure 2. A vast range of canopy porosity was sampled in 
New Zealand (Figure 2A), as quantified percent gaps spanned 
from almost 0% (extremely dense canopy) to 80% gaps (ex-
tremely porous canopy). In Croatia (Figure 2B), the most po-
rous canopy barely reached the 15% gaps. In Spain (Figure 
2C), percent gaps ranged from 0 to 80% gaps, although the 
wide range was due to the assessment of the same grapevine 
canopies after two consecutive defoliation/thinning steps, 
which led to an increase in canopy porosity. At this site, the 
increased canopy porosity was quantified after each defolia-
tion step. Image analysis and PQA showed that percent gaps 
increased to an average of 17% and 46% after the first and 
second defoliation/thinning steps, respectively (n = 8). 

A strong correlation between percent canopy gaps mea-
sured by image analysis and those measured by PQA was 
observed regardless of vineyard location, grapevine variety, 
or type of ROI delimitation (Figure 2). An even higher de-
termination coefficient (R2) was obtained when all sites and 
varieties were pooled together (Figure 2D). In addition to 
the global regressions computed for all three locations, in-
dividual regressions between the percent canopy gaps mea-
sured by image analysis versus PQA were also calculated for 
each individual cultivar in New Zealand (Figure 3) and in 
Croatia (Figure 4). In New Zealand, significant relationships 
(intercept and slope coefficients statistically significant at 
p < 0.001) were observed with Merlot (R2 = 0.93, Figure 3A), 
and Syrah (R2 = 0.83, Figure 3B), whereas in Croatia, only the 
regression for Merlot was statistically significant (Figure 4).

Table 1 shows the 95% confidence intervals for the slope 
and intercept coefficients for all statistically significant regres-
sions, as well as the t-test and p-values of the statistical tests 
to verify whether the slope coefficients were different from 
1 and intercept coefficients were different from 0. The slope 
coefficient was not statistically different from 1 (p > 0.05) for 
the Tempranillo in Spain, the global regressions within each 
country, and the global regression for all cultivars and sites. 
These results were confirmed by the confidence intervals, 
as the range delimited by the lower and upper confidence 
intervals only included the value 1 for those regressions with 
slope coefficient statistically equal to 1. The intercept values 
equaled 0 for all except the global regression, for which the 
95% confidence interval of the intercept did not include 0 and 
the corresponding t-test had a p < 0.05 (Table 1). 

Influence of the time of the day and side of canopy im-
aged.  The inconsistent presence of shadows in the images 
caused by the time of day and the side of the canopy may in-
fluence the accuracy of the model at each site. Figure 5 shows 
the images of a given Cabernet Sauvignon grapevine from the 
east side of the canopy in the morning (Figure 5A), at midday 
(Figure 5B), and in the afternoon (Figure 5C), and from the 
west side of the canopy in the morning (Figure 5D), at midday 
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(Figure 5E), and in the afternoon (Figure 5F). Larger pres-
ence of shadows were observed when images were taken on 
the east side in the morning (Figure 5A) and on the west side 
in the afternoon (Figure 5F), whereas almost no shadows in 
the fruiting zone can be detected for images taken under all 
other conditions. To test the effect and interaction of the time 

of day and side of the canopy, a two-way ANOVA with time × 
side interaction was calculated for the percent gaps measured 
by image analysis of the same set of 30 Cabernet Sauvignon 
vines photographed from the east and west sides of the canopy 
in the morning, midday, and afternoon. The time of day (p = 
0.120), the side of the canopy photographed (p = 0.618), and 
their interaction were not significant (p = 0.778). 

For the experiment involving image acquisition of the 
same grapevines at different times of day and on each sides 
of the canopy, statistically significant (p < 0.001) regressions 
of the percent gaps computed by image analysis versus PQA 
were calculated and are shown in Figure 6. The best fit was 
achieved for images taken at midday (Figure 6C, 6D) and 
afternoon (Figure 6E, 6F), with R2 higher than 0.90, regard-
less of whether the east or west side of the canopy was photo-
graphed. T-tests were performed to assess whether the slope 
coefficients of the regression models was affected by image 
acquisition conditions and to determine whether their values 
were different from 1. Table 2 shows the 95% confidence inter-
vals for the slope and intercept coefficients of all statistically 

Figure 3  Regressions of percent canopy gaps measured by image 
analysis compared to canopy gaps measured by point quadrat analysis 
(PQA; solid line) for (A) Merlot (n = 180) and (B) Syrah (n = 108) in New 
Zealand in 2012 and 2013, with a 1:1 reference line (dotted line), and a 
95% confidence interval (dashed line). Slope coefficients were significant 
for α = 0.001.

Figure 4  Regressions of percent canopy gaps measured by image 
analysis compared to canopy gaps measured by point quadrat analysis 
(PQA; solid line) for Merlot (n = 27) in Croatia in 2012 and 2013, with a 
1:1 reference line (dotted line) and a 95% confidence interval (dashed 
line). Slope coefficient was significant for α = 0.001.

Table 1  Slope coefficients of the regression models of the canopy percent gaps estimated by image analysis versus point quadrat  
analysis (PQA) for different cultivars and sites. The 95% confidence intervals for the slope coefficients are indicated in brackets.  
The t-test values and their corresponding p values for the null hypothesis of H0: slope = 1 and H0: intercept = 0 are presented.

Site/cultivar N Slope t-test valuea p value Intercept t-test valuea p value

New Zealand
Merlot 180 0.945 (0.907; 0.984) 2.85 0.004 0.921 (-0.826; 2.669) 1.04 0.299
Syrah 108 0.905 (0.826; 0.983) 2.44 0.016 -1.464 (-3.731; 0.803) -1.28 0.203
All 288 0.970 (0.937; 1.003) 1.76 0.079 -1.243 (-2.581; 0.095) -1.83 0.068

Croatia
Merlot 27 0.839 (0.939; 0.983) 2.30 0.030 0.089 (-1.111; 1.289) 0.15 0.880
All 45 0.864 (0.746; 0.981) 0.18 0.856 -0.415 (-1.220; 0.390) -1.04 0.304

Spain
Tempranillo 24 1.007 (0.861; 1.153) 0.14 0.888 2.890 (-4.143; 9.926) 0.85 0.403

All sites
All 357 0.979 (0.952; 1.007) 1.50 0.134 -1.115 (-2.176; -0.054) -2.07 0.039

at-tests for the null hypothesis H0: slope =1 and H0: intercept = 0 were only tested for those regressions with statistically significant slope coef-
ficients (p < 0.05). All cultivars in Croatia also included measurements on Cabernet Sauvignon and Sauvignon blanc.
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significant regressions, and the t-test and p-values to determine 
if the slope coefficients were statistically different from 1 and 
the intercept coefficients were statistically different from 0. 
The slope coefficient of the regression for the images taken on 
the west side of the canopy in the afternoon was significantly 
different (p = 0.0024) from the other five slope coefficients 
and was the only condition in which the slope was not signifi-
cantly different from 1 (p = 0.293) (Table 2). The intercept 
coefficients were statistically different from 0 in all conditions.

Discussion
Canopy porosity by image analysis versus PQA: Re-

gression models.  A new, objective, noninvasive, automated 
method was developed using RGB images of grapevine cano-
pies in the vineyard to analyze canopy porosity. The method 
was remarkably effective in vineyards of three different wine 
producing countries where grapevines of various cultivars 
were grown under distinct viticultural conditions (e.g., soil, 
climate, plant density, row orientation).

Regression analyses showed that assessment of canopy po-
rosity by image analysis with the developed algorithm and by 
PQA yielded very similar results. For both New Zealand and 
Croatian trials in which models were built individually for 
each cultivar, PQA tended to overestimate the percent gaps 
as the slope coefficients of the regressions were significantly 
lower than 1. However, the slope coefficients were not statisti-
cally different from 1 for the Spanish site with Tempranillo, 
the global models for each country, and the global model for 
all sites. 

With PQA, the minimum gap size is limited by the probe 
diameter and the working precision and experience of the 
operator, whereas with image analysis, the minimum gap 
size is fixed by the image resolution or pixel size. Moreover, 
using PQA to assess canopy porosity, which involves a lim-
ited number of insertions, means that each insertion (of size 
corresponding to the diameter of the probe) represents the 
porosity of a canopy surface that may be several-fold greater 
than the probe’s diameter. This effect, which gets diminished 

as the number of insertions increases, may lead to enhanced 
uncertainty in the percent gap values measured by PQA. On 
the other hand, in canopies with high density (percent of gaps 
less than 6%) and small range in percent gaps (which oc-
curred with the Cabernet Sauvignon and Sauvignon blanc in 
Croatia in the 2012-2013 season), the regression model of the 
percent gaps determined by image analysis versus PQA was 
inaccurate and no correlation could be established between 
the methods.

Regardless of whether the slope coefficient differed from 
1 or the intercept values differed from 0, the significant re-
gression models developed for different cultivars, sites, and 
image acquisition conditions confirmed that the developed 
image analysis algorithm could accurately assess the canopy 
porosity in VSP-trained grapevines.

In addition to the canopy porosity, PQA provides addi-
tional information about the density of the vegetation in the 
canopy, including leaf layer number, cluster exposure, percent 
interior clusters, leaf exposure, and percent interior leaves. 
Some of this canopy information can also be assessed using 
image analysis, as Tardaguila et al. (2010) measured cluster 
exposure and yield in a defoliation trial. The algorithm devel-
oped for this study was adapted from the procedure described 
by Tardaguila et al. (2010) and distinguishes between leaves 
and clusters. However, the present work focused on the as-
sessment of the canopy gaps in VSP-trained grapevines, as 
this training system is used worldwide. For this type of trel-
lising, the vertical training of the shoots between the catch 
wires leads to a tightly packed configuration of vegetation 
(width of VSP canopies usually ranges from 30 to 40 cm). 
Under these conditions, the canopy gaps are allocated so that 
they are assumed to be in a 2D distribution. This 2D approach 
underlying the image analysis method mimics the human vi-
sual assessment but provides an objective figure that cor-
responds to the number of pixels matching the canopy gaps. 
Although visual estimations are rapid, they are subjective 
and prone to observer bias (Wilson et al. 2007). Additionally, 
visual estimates may yield confounding results from different 
observers and cannot provide robust, reliable, and consistent 
information. Appropriate and regular training is required to 
mitigate the subjectivity of visual estimation (Balehegn and 
Berhe 2015). The developed image analysis method is more 
conclusive when applied to VSP systems and less responsive 
to non-vertical trellising. Applying the image analysis method 
to open canopies requires consideration of additional factors, 
such as the internal distribution of leaves and clusters as well 
as additional images taken from above or at the bottom of the 
canopy. The integration of information on PPF was used by 
Meyers and Vanden Heuvel (2008) to enhance the precision 
and spatial acuity of PQA in open canopies. Other alternatives 
involve the use of LiDAR to better characterize the depth 
of the canopy gaps in open trellis systems, as this type of 
terrestrial laser scanner operates based on the time-of-flight 
principle to estimate the distance to the canopy (Arnó et al. 
2015). Conversely, several authors (Fuentes et al. 2012, De 
Bei et al. 2015) have estimated the leaf area index of grape-
vine canopies by imaging from the bottom of the plant. Hill 

Figure 5  Red, green, and blue (RGB) images of a given Cabernet 
Sauvignon grapevine taken in Croatia (September 2015) from the east 
side of the canopy (A) in the morning, (B) at midday, and (C) in the af-
ternoon, and from the west side of the canopy (D) in the morning, (E) at 
midday, and (F) in the afternoon. Morning time: 1100 hr; midday: 1400 
hr; afternoon: 1700 hr.
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Table 2  Slope coefficients of the regression models of the canopy percent gaps estimated by image analysis (under different image ac-
quisition conditions) versus point quadrat analysis for a given set of Cabernet Sauvignon grapevines. The 95% confidence intervals for the 
slope coefficients are indicated in brackets. The t-test values and their corresponding p values for the null hypothesis of H0: slope = 1 and 

H0: intercept = 0 are presented.

Time of day/side 
of canopy N Slope t-test valuea p value Intercept t-test valuea p value

Morning
East 30 0.793 (0.657; 0.928) 3.14 0.004 4.988 (2.059; 7.917) 3.49 0.002
West 30 0.640 (0.529; 0.751) 6.66 <0.001 8.089 (5.681; 10.496) 6.88 <0.001

Midday
East 30 0.849 (0.750; 0.949) 3.14 0.004 6.126 (3.978; 8.275) 5.84 <0.001
West 30 0.769 (0.691; 0.847) 6.06 <0.001 7.115 (5.427; 8.804) 8.63 <0.001

Afternoon
East 30 0.726 (0.634; 0.817) 6.12 <0.001 11.363 (9.376; 13.351) 11.71 <0.001
West 30 0.944 (0.836; 1.051) 1.07 0.293 5.849 (3.638; 8.061) 5.43 <0.001

at-tests for the null hypothesis H0: slope = 1 and H0: intercept = 0 were only tested for those regressions with statistically significant slope 
coefficients (p < 0.05).

Figure 6  Regressions of 
percent canopy gaps mea-
sured by image analysis 
compared to canopy gaps 
measured by point quadrat 
analysis (PQA; solid line) 
for Cabernet Sauvignon in 
Croatia in 2015 for images 
taken from the east side of 
the canopy (A) in the morn-
ing, (C) at midday, and (E) in 
the afternoon, and from the 
west side of the canopy (B) in 
the morning, (D) at midday, 
and (F) in the afternoon, with 
a 1:1 reference line (dotted 
line), and a 95% confidence 
interval (dashed line). Slope 
coefficients were significant 
for α = 0.001. Morning time: 
1100 hr; midday: 1400 hr; 
afternoon: 1700 hr; n = 30.
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et al. (2011) compared the leaf layer number of the canopy 
assessed by PQA with the gap area percentage estimated by 
image analysis and observed a correlation between the log-
transformed variables (R2 = 0.87, p < 0.001). However, no 
studies have directly compared the two methods for measur-
ing gap percent as Hill et al. (2011) focuses on assessing the 
density of the foliage. 

Factors influencing image analysis.  Several factors may 
influence the performance of the developed image-analysis 
method, including the method of ROI delimitation and shad-
owing induced by natural illumination, which depends on the 
time of day and canopy side photographed. Unlike the two 
other sites, a wooden frame was used both for image acquisi-
tion and PQA at the New Zealand site. The frame simplified 
delineation of the edges of the ROI for image analysis and 
ensured a higher correspondence between the canopy area 
assessed by the two methods. However, from an operational 
point of view, the use of a frame at the New Zealand site did 
not seem to yield a substantial increase of R2 and accuracy. 
Therefore, to simplify the application under field conditions, 
use of a frame is not needed.

The results obtained from the imaging trial performed 
at different times of day and on both sides of the canopy 
showed that the algorithm was able to overcome differences 
in shadowing, as the percent gap was not significantly differ-
ent among the six environmental conditions tested. There-
fore, the algorithm was robust enough (provided the proper 
seeds for class establishment are given at the beginning of 
the process) to assess percent gaps in the grapevine canopy 
using images with variable shadow distribution and taken 
at different times of day. To improve the practicality of the 
image analysis method, further research should investigate 
eliminating its dependence on the background color to im-
prove its functionality for applications in the vineyard and 
promote the adaptation of this image-based methodology to 
an on-the-go approach.

Practical implications of the developed image-analysis 
method.  According to Hill et al. 2011, image-based estima-
tion of canopy porosity is an objective method whereas PQA 
is subjective. These authors report some subjectivity to the 
choice of where to frame the photographs to most accurately 
represent the whole grapevine when using the image-assisted 
method to estimate leaf layer number. To evaluate the canopy 
porosity in our study, we targeted the fruiting zone, which is 
the ROI from the viticultural point of view because the fruit 
zone microclimate is a substantial determinant of grape qual-
ity and health. Our developed image-based method is simple 
enough for production vineyards to measure canopy charac-
teristics, which may allow vineyard managers and grapegrow-
ers to refine their manipulations of the canopy, thereby saving 
money and improving wine quality. Information about percent 
canopy gaps may guide the producer’s choice of management 
practices in the following or current season, provided the as-
sessment of the canopy gap is performed early enough in the 
season, (i.e., after flowering) to support decisions about leaf 
removal during the early stages (such as at berry set, pea size, 
or veraison). From a practical perspective, assessing canopy 

gaps using PQA may not be difficult for an experienced and 
skilled grapegrower. However, considering the importance 
of canopy management for the health and quality of fruit, a 
method that allows a grapegrower or vineyard manager to 
quickly measure, control, and manage canopy porosity is 
valuable for producing high-quality grapes in both experi-
mental and commercial operations. Future work will focus 
on simplifying the image acquisition process by avoiding 
the use of a background color, adapting the algorithm to be 
implemented in low-cost, easy-to-use devices (such as smart-
phones), and enabling image acquisition on-the-go. 

Conclusion
A new, objective, noninvasive, image-analysis based meth-

od to assess grapevine canopy porosity was successfully de-
veloped and tested in vineyards with diverse viticultural con-
ditions and cultivars in three wine regions around the world 
and may be a viable alternative to the more laborious PQA. 
Considering the easy-to-use implementation of the image-
based method, which is accurate with images acquired from 
any side of the canopy at any time of day, and its potential to 
refine canopy management, image analysis techniques will 
likely gain acceptance in viticulture. The developed method 
may optimize canopy management by enabling the user to 
configure a desired amount of canopy gaps, which could be 
maintained or further manipulated as the season progresses, 
with the aim of improving fruit quality and health. New tech-
nologies such as machine vision could be adapted to develop 
decision support tools and provide fast and noninvasive moni-
toring, which would be helpful for precision viticulture.
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